2019 IEEE International Conference on Big Data (Big Data)

Machine Learning for Prediction of Mid to Long
Term Habitual Transportation Mode Use

Alina Lazar, Alexandra Ballow”
Dept. of Computer Science and
Information Systems
*Dept. of Physics and Astronomy
Youngstown State University
Youngstown, OH
alazar @ysu.edu, alballow @student.ysu.edu

Abstract—Prediction of daily transportation mode use (car,
public transit, or active travel) is a important task in trans-
portation research. Unlike statistical models that impose a
predetermined model structure, machine learning models are
learned from the data, making them more flexible with higher
prediction accuracy. However, prediction of mid- to long-term
habitual modes still largely relies on traditional statistical analysis
using small samples of cross-sectional data. Low interpretability
of “black-box” machine learning models limits their usefulness
for generating behavior insights needed for designing appropriate
interventions. This paper, leveraging a set of unique longitudinal
life course data, is the first use case to demonstrate machine
learning methods applied for both predicting and interpreting
regularly used travel modes. We combine sequence clustering and
tree-based machine learning methods coupled with TreeExplainer
to predict and interpret habitual travel modes using mid- to
long-term predictors. Five life course clusters are derived to
provide evaluation and interpretation contexts. This allows us
to improve upon a recently developed TreeExplainer method to
better distinguish predictor importance locally and globally; and
predictor interactions across subpopulations within distinctive
life history contexts. Our results demonstrate a promising step
toward interpretable machine learning applications to mid- to
long-term prediction of travel modes for transportation planning.

Keywords-life course, life events, habitual transportation mode,
sequence analysis, machine learning, gradient boosting, treeEx-
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I. INTRODUCTION

The mode of transportation we choose can have a signifi-
cant energy and environmental implications. Traditional mode
choice prediction studies have been focused on trip-based
analysis with trip specific attributes (such as trip cost, distance,
time, terrain) being the major factors that shaped the choice
preferences [1]. However, it has been suggested that regularly
used modes are largely habitual and only change upon major
life events, such as attending school, getting employed, get-
ting married, and having a child [2], [3]. Methodologies for
predicting these regularly used travel modes are instrumental
to longer term transportation planning and creating sustainable
transportation systems.

Unlike statistical models that impose a predetermined model
structure, machine learning models are learned from the data,
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making them more flexible with higher prediction accuracy.
Applications of machine learning methods to mode choice
analysis have so far been limited to short-term trip data [4],
while understanding mid- to long-term habitual or regularly
used modes still largely relies on traditional statistical analysis
with small sample cross-sectional data [3].

Predicting regularly used modes with machine learning
methods needs longer term data that are difficult to collect
from the life courses of individual travelers. More importantly,
the models learned from the data and their performances need
to be interpretable to generate travel behavior insights. This
is particularly challenging for life course data because feature
importance and their interactions should be understood within
a dynamically changing life context rather than a simple global
feature importance ranking [5].

This paper uses mid- to long term features such as life
cycle stages, residence, and car ownership to predict regularly
used transportation modes: driving (“used own”), public transit
(“used public”), and active travel (“bike/walk”). By leveraging
a unique life course data set collected by a recent transporta-
tion behavior study, this paper is the first to demonstrate
machine learning methods applied to both predicting and
interpreting regularly used transportation modes. We evaluate
the performance of a suite of tree-based machine learning
methods. To address the interpretability challenge, sequence
clustering is used to derive five distinctive family and career
trajectories which provide the life history contexts for Tree-
Explainer [5] to further probe both global and local feature
importance and feature interactions. The rest of the paper is
organized as follows: section II introduces the data; section
IIT describes the machine learning methods and interpretation
strategies; section IV present the results; and section V con-
cludes.

II. DATA DESCRIPTION AND PREPROCESSING

We use data collected through the WholeTraveler Trans-
portation Behavior Study [6], which is part of the U.S. De-
partment of Energy’s Systems and Modeling for Accelerated
Research in Transportation (SMART) Mobility Consortium.



The survey was administered in the nine core Bay Area
California counties.

The WholeTraveler study implemented a life history calen-
dar survey, which asked the respondents to recall the years
when certain key life events occurred and other pertinent
factors on an annual basis starting at age 20 and up to age 50.
Such design allows for efficiently collection of longitudinal
data in a single shot of survey. The input features used in
training the machine learning models include yearly life cycle
status: school, employment, living with a partner, having a
child, household size (“hhsize”), as well as durable mobility-
related decision variables such as number of cars (“numcars”
and public transit availability at the residence location (“pub-
lic_avail”). Birth year and gender, fixed across time, are also
included.

We restrict the analysis to the 17,777 observations from the
569 of the respondents who were age 35 or older at the survey
year (2018) capturing a life period that presents the greatest
heterogeneity among the population [3].

III. METHODS

A. Sequence Clustering

We use sequence clustering to construct different types
of life course trajectories in the family (partner and child)
and career (school and employment) dimensions. Given the
categorical, longitudinal characteristics of the life trajectory se-
quences, we use the edit-distance based dissimilarity measure
called optimal matching (OM) and follow the joint sequence
analysis approach by [7] to compute dissimilarities between
sequences describing trajectories of multiple life dimensions.
The method used is implemented in the TraMineR package
version 2.0-6. We conduct hyper-parameter tuning and perfor-
mance evaluation following procedures detailed in [8], [9].

B. Tree-based Machine Learning Methods

1) Random Forest: This algorithm [10] builds an ensemble
of decision trees, or tree predictors, which depend on randomly
and independently sampled vectors over the same distribution.
The strength, correlation and monitor error are closely fol-
lowed to track the growing features in response to the branches
splitting.

2) XGboost, Catboost, and LightGBM: Standard gradient
boosting methods managed to solve over-fitting problems, but
inefficiently. In an effort to make gradient tree boosting more
flexible and scalable, Chen [11] created the scalable XGBoost
algorithm. XGBoost employs a new regularization technique,
instead of optimizing the loss function, to minimize the over-
fitting. This tactic allows XGBoost to be faster and more robust
during tuning. Two other boosting methods examined here
were shown to have better performance on categorical data
[12]. A slightly different method, CatBoost, focuses on cate-
gorical columns using permutation techniques and target-based
statistics [13]. The light gradient boosting machine (Light-
GBM) further improves standard gradient boosting methods.
Microsoft developed LightGBM by growing the decision trees
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leaf-wise, allowing it to support GPU learning speed, with
faster training time, better accuracy, and for larger data [14].

C. Model Interpretation

The ensemble tree methods, such as XGboost or random
forest, provide robust accuracy for classification and regression
tasks using large sets of shallow trees. Explaining and inter-
preting the prediction made by these models is very important,
but not trivial. The new method TreeExplainer developed by
Lundberg et al. [5] is based on game theory and provides
a fast, consistent and accurate method to determine feature
importance.

The SHAP values, the core of this method, represent the se-
quential impact on the model’s output of observing each input
feature’s value, averaged over all possible feature orderings. In
addition to just ranking the features based of their contribution
to the classification, the SHAP values can be used to plot for
each feature individualized explanations for every data point
in the dataset and how their values affect the final prediction
(Figure 2). Even more revealing are the SHAP dependence
plots (Figure 3). These plots capture the impact of one feature,
age for example, on the classification task. The interaction of
two features can be shown by coloring the individual data
points based on the values of a different feature.

IV. RESULTS AND DISCUSSIONS

A. Life course clusters

Ward’s linkage hierarchical clustering yields a five cluster
solution based on clustering quality metrics. The five clusters
shown in Figure 1 summarize the dynamic patterns across
age of the percentage of sample in the family (partner and
child) and career (school and employment) dimensions. The
distinction between clusters is mostly driven by the timing of
partner and children. Based on their observable life trajectory
patterns, we refer to the five clusters as “Singles,” “Couples,”
“Have-it-alls,” “Late Bloomers,” and ‘“Family First”:

1) Singles: (40% of the sample) tend to finish school and
enter the workforce early and delay or eschew having a partner
or children.

2) Couples: (27%) tend to finish school, work, and partner
up early but delay or eschew having children.

3) Have-it-alls: (18%) finish school and start to work early
in life, and partner up and have children only slightly after.

4) Late Bloomers: (8%) generally delay school, work,
partnering, and children until much later in life, if at all.

5) Family First: (7%) tend to partner up and have children
early and delay school and/or work.

These life trajectory clusters serve as a contextual system
to understand whether the XGBoost model performs equally
across these sub-populations and how it uses input features
to make predictions of various habitual transportation modes
within specific life course contexts.
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Fig. 1.

B. Prediction Performance of tree-based learning methods

We employ a 10-fold cross validation to train the four tree-
based models. As the purpose is to make temporal predictions
of individuals’ mode use, training and testing samples are
split by the age variable. The performance metrics (accuracy,
precision, recall, and F1 score) on the testing data set are
shown in Table I. Model performances are consistent across
the five life trajectory clusters (additional tables available upon
request).

All four methods yield good performance for predicting the
“used own” car mode. Random Forest and XGBoost perform
similarly in predicting “use public” transit and “walk/bike”,
and both outperform CatBoost and LightGBM, especially in
the Recall and F1 metrics. For the rest of the paper, we use
XGBoost to further interpret the model predictions.

TABLE 1
CLASSIFICATION PERFORMANCE ON TESTING DATA SETS
[ | Method [ Acc. [ Prec. [ Recall [ FI |
Random Forest | 0.8216 | 0.6021 | 0.5217 | 0.5590
used public | XGBoost 0.8193 | 0.6045 | 0.4813 | 0.5359
CatBoost 0.7761 | 0.4804 | 0.4048 | 0.4394
LightGBM 0.8008 | 0.6274 | 0.1994 | 0.3026
Random Forest | 0.8807 | 0.6066 | 0.3882 | 0.4735
walk/bike XGBoost 0.8908 | 0.6894 | 0.3812 | 0.4909
CatBoost 0.8622 | 0.5031 | 0.1882 | 0.2740
LightGBM 0.8700 | 0.8049 | 0.0776 | 0.1416
Random Forest | 0.8391 | 0.8495 | 0.9529 | 0.8983
used own XGBoost 0.8258 | 0.8420 | 0.9433 | 0.8898
CatBoost 0.7530 | 0.8479 | 0.8147 | 0.8310
LightGBM 0.7949 | 0.7936 | 0.9795 | 0.8768

C. Interpretation of mode predictions

1) Feature importance: The local explanations (or SHAP
values) of individual input features are computed for predicting
each habitual mode (example for predicting walk/bike can
be found in Figure 2 left). Positive SHAP values indicate
a higher likelihood of using the mode and vice versa. The
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input features are ranked by their global importance (i.e., the
mean absolute SHAP values) as shown in the global feature
importance (Figure 2 right).

Birth-year, age, and number of cars owned are consistently
among the top five globally important features for all modes
and the remaining two features are mid- to long-term mobility
or life-event-related inputs, which are different across the
modes as shown in Figure 3. While the importance of life-
event-related features are mostly similar to previous literature,
especially for school and employment status, difference is
seen in household size on predicting bike/walk across travelers
with different family forming histories. Despite its overall low
importance for the bike/walk mode, household size replaces
school in the top five features (Figure 2 left insert) for
the “Family-first” travelers who partner up and have children
early and delay school and/or work. Current literature usually
bases their variable selection on global feature importance
ranking. Our result here suggests that such a practice may miss
important features for certain sub-population and therefore
bias predictions.

2) Life event interactions with age: Interpretation of input
features is straightforward when their effects (as represented
by the summary of SHAP values Fig 2 left) are monotonic
with mode use. For example, owning more cars decreases
walk/bike use, while attending school increases it. However,
the interpretation is more challenging for features (such as
age and familial events) whose effects are conditioned on
multiple other variables. The generic variable interactions
from TreeExplainer handle two features at a time. We use
life history clusters to provide further conditional context
and illustrate it with child and age interactions in Fig 4.
Aggregating over the full sample, having children appears to
significantly increase driving when survey respondents are in
their 30s. However, such a pattern is not representative of the
two clusters that had children relatively early in life. "Have-
it-alls” increase their car usage much earlier than the average
population. However, those categorized as "Family-first”, who
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Fig. 2. Local explanation summary (left) and global feature importance (right) for predicting use of own car.
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Fig. 4. Interaction of child with age on car use prediction derived from all
samples (left) and within different life history contexts (right)

delay their education and work, do not increase car usage as
much upon having a child, likely due to more limited resources
and/or need for driving. These results suggest that the model
adequately captures the complex interactions within different
life histories and confirms the importance of timing in multiple
life event dimensions.

V. CONCLUSION

This paper, leveraging a unique life course data set, is
the first use case to demonstrate machine learning methods
applied to both predicting and interpreting regularly used
transportation modes. We design an innovative analysis frame-
work, combining sequence clustering and tree-based machine
learning methods coupled with TreeExplainer, to predict and
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interpret habitual modes using mid- to long-term predictors.
Five life course clusters are derived to provide evaluation and
interpretation contexts.

We find that the commonly used global feature importance
is not representative of all the sub-populations with different
life history contexts. Variable selection using the global feature
importance ranking may miss important features for certain
sub-populations and therefore produce biased predictions.

The TreeExplainer-derived local explanation can be straight
forward for input features that have a monotonic association
with the outcome variables. For input features whose contri-
bution are conditioned on others, this paper has shown that
such conditionality is better interpreted by presenting feature
interactions within different life history contexts.

The analysis framework implemented here demonstrates a
promising step toward interpretable machine learning appli-
cations to mid- to long-term prediction of travel modes for
transportation planning.
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